
Modeling diffusion and phase transitions by a uniform-acceptance force-bias
Monte Carlo method

Maria Timonova,* Jasper Groenewegen, and Barend J. Thijsse
Department of Materials Science and Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The Netherlands

�Received 19 October 2009; revised manuscript received 1 March 2010; published 13 April 2010�

The uniform-acceptance force-bias Monte Carlo �UFMC� method �G. Dereli, Mol. Simul. 8, 351 �1992�� is
a little-used atomistic simulation method that has strong potential as alternative or complementary technique to
molecular dynamics �MD�. We have applied UFMC to surface diffusion, amorphization, melting, glass tran-
sition, and crystallization, mainly of silicon. The purpose is to study the potential and the limitations of the
method: to investigate its applicability, determine safe and effective values of the two UFMC parameters—a
temperature and a maximum allowed atomic displacement per iteration step—that lead to reliable results for
different types of simulations, assess the computational speed increase relative to MD, discover the micro-
scopic mechanisms that make UFMC work, and show in what kind of simulations it can be useful and
preferable over MD. It is found that in many simulations, UFMC can be a very efficient alternative to MD: it
leads to analogous results in much fewer iteration steps. Due to the straightforward formalism of UFMC, it can
be easily implemented in any MD code. Thus both methods can be combined and applied in turn, using UFMC
for the acceleration of certain processes and MD for keeping precision and monitoring individual atom
trajectories.
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I. INTRODUCTION

In materials science, true understanding begins at the
atomic level. The concerted behavior of atoms determines
the properties of a material and the effects of external influ-
ences to which the material is subjected. It has therefore been
recognized long ago that molecular-dynamics �MD� simula-
tion, with its atomic resolution and full dynamical evolution
monitoring, is a powerful technique for materials modeling,
especially since nonequilibrium conditions are often critical
in the synthesis of materials. However, routes to equilibrium
are equally important, and because the relaxation to equilib-
rium is often a time-consuming process in simulations, a
method faster than MD is highly desirable.

A promising alternative to the MD is one of the Monte
Carlo techniques based on the force-bias Monte Carlo
�FBMC� method1 in which the probability of the transition of
an atom from one position to the next is force dependent.
Although FBMC has many advantages over other MC tech-
niques and can be easily implemented into an MD simulation
code, it has not been widely used. Only a few authors have
applied it in simulations of water.2 Later the FBMC method
was modified by Dereli3 by making the transition of an atom
be always accepted. Dereli called it a continuum Monte
Carlo method and applied it to study the growth of amor-
phous silicon. Another group has used this method for epi-
taxial growth of Ge on �100� Si �Ref. 4� and called it dy-
namic Monte Carlo. In both cases, the authors did not
present values for all UFMC parameters and did not discuss
the potential and limitations of the method. It was merely
shown that these simulations gave physically meaningful re-
sults, comparable with MD, but with the distinct advantage
of a smaller number of calculation steps.

Encouraged by these results we decided to study the
method more intensively and under more process conditions,
to determine safe and effective values of the UFMC param-

eters that lead to reliable results in different types of simula-
tions, assess the computational speed increase relative to
MD, and identify the microscopic mechanisms that make
UFMC work. The cases studied are an analytical one-
dimensional �1D� diffusion model, three-dimensional �3D�
surface diffusion, a crystal at temperatures below melting,
and phase transitions such as solidification, amorphization,
recrystallization, and melting. The aim of this work is three-
fold. First, we want to explore how wide the applicability of
the method is. A second objective is to determine what the
method’s main ways of operation are, in other words, which
types of microscopic events are the actual carriers of the
method and third, we want to find out by how much the
computational speed can be accelerated compared to MD,
without sacrificing too much physical fidelity. In the present
paper, we name this method the uniform-acceptance force-
bias Monte Carlo �UFMC� method to indicate that it is a
particular case of FBMC.

The paper is organized as follows. It starts with a descrip-
tion of the UFMC method �Sec. II� and the computational
details of the simulations �Sec. III�. Thereafter, the simula-
tion results are presented: the 1D idealized diffusion model
and 3D Cu diffusion on a �100� Cu surface in Sec. IV A, a Si
crystal below its melting point in Sec. IV B, phase transitions
of Si in Sec. IV C, and recrystallization of an amorphous Si
phase produced by ion bombardment on the �100� surface of
a Si crystal in Sec. IV D.

II. METHOD AND COMPUTATIONAL DETAILS

A. UFMC method

During a UFMC simulation, atoms are moved iteratively
like in MD. A major difference with MD is that in UFMC,
the atomic velocities do not play a role, simply because they
are not considered; only positions and forces count. In a
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single UFMC iteration step, all atoms are moved sto-
chastically. Every atom is given probabilistic displacements
�v ��=x ,y ,z� in the three Cartesian directions, limited by the
values −� /2 and � /2, where � /2 is a user-selectable param-
eter of the method. Hence, � is the total range in which the
new position of the atom will fall. Thus, �v normalized by
� /2 or

�v =
�v

�/2
�1�

takes values between −1 and +1, and a uniform random
number �v on �0,1� is used to generate a value for �v in the
following way:

�v =
1

�v
ln��v�e��v� − e−��v�� + e−��v�� , �2�

where

�v =
Fv�/2
2kBT

�3�

with Fv the � component of the force F acting on the atom
under consideration, kB the Boltzmann constant, and T the
temperature chosen for the UFMC simulation. The tempera-
ture T is the second user-selectable parameter of the method.
With Eq. �2�, the probability density function of �v has the
form

p��v� = Kv
−1 exp�Fv�v�/2

2kBT
� , �4�

where the constant Kv is found by normalization on the de-
fined interval �−1,1�. Then Eq. �4� becomes

p��v� =
��v�

�e��v� − e−��v��
exp��v�v� . �5�

For sufficiently small atomic moves, i.e., moves so small
that the force does not change appreciably, this probability
density function is equivalent to an exponential distribution
of the change in the potential energy U of the system as a
result of the move. This is because the change in U is given
by �U=−Fv�v, which transforms the final exponential factor
in Eq. �5� to

exp��v�v� = exp��v
�v

�/2� = exp�−
�U

2kBT
� . �6�

This is the essential condition of the UFMC method, and it
shows—among other things—that atoms can make uphill
moves, in the sense that a move can increase the potential
energy. The factor 2 in the denominator of the exponent may
seem strange in comparison to what one expects in a Boltz-
mann factor. However, it was reported by different authors2

that this factor yields a faster convergence most of the time.
We will continue to refer to T as “the” temperature in an
UFMC simulation, although, as just mentioned, in UFMC
the atoms have no velocity and therefore no kinetic energy.

Note that UFMC is not really a sampling method such as,
for instance, Metropolis MC. In Metropolis MC, structural
phase space is sampled according to a well-known equilib-

rium ensemble distribution, for example, NVT �Gibbs petit-
canonical ensemble�, without any role of time as a driving
quantity. Instead, UFMC approximates the dynamics of a
system, irrespective of its distance from equilibrium. It is
true, of course, that the atomic moves are sampled from a
distribution �Eqs. �5� and �6�� but it is the entire dynamic
route that is sampled, not just the final equilibrium distribu-
tion. Move-by-move, under UFMC each system change is
driven by a Boltzmann distribution �Eq. �6��, which is differ-
ent from the classical ensembles but may be seen as a long
succession of instantaneous and local statistical processes.
Our results will show that, if UFMC is applied inside its safe
regime, the dynamic route and the final state are robust and
stable.

From the user perspective, two parameters have to be cho-
sen before applying the UFMC method: the temperature T
and the maximum allowed displacement � /2. In this work,
we will show that, although T is formally a parameter rather
than a real temperature, realistic values should be chosen for
T. For � /2, the selected values should be much smaller than
a typical interatomic distance R, or else Eq. �6� will be se-
verely violated or atoms will start approaching each other
unphysically close. Yet, very small values for � /2 should be
avoided because they will lead to an ineffective simulation
and little or no gain in computational speed. Practical
choices will be discussed in this work.

For convenience, we list a few analytical results. All ex-
pressions are based on the probability density of Eq. �5�. As
�v is very often a number smaller than 1, the small-�v ex-
pressions are given separately. The average value of �v is

��v	 = coth �v −
1

�v
, �7�

��
v
	 =

�v

3
−

�v
3

45
��v small� �8�

with standard deviation

�� =
1 +
1

�v
2 − coth2 �v, �9�

��v
=
1

3
�1 −

�v
2

10
� ��v small� . �10�

The average change in the potential energy due to a single
move in one direction is

��U	 = − Fv��v	 = − Fv��v	�/2. �11�

The probability of an atom to move in the direction opposite
to the force is

P�Fv�v 	 0� =
1 − e−��v�

e��v� − e−��v� , �12�

P�Fv�v 	 0� =
1

2
−

��v�
4

��v small� . �13�

In Fig. 1, ��v	, ��, and P�Fv�v	0� are plotted as a func-
tion of �v according to Eqs. �7�, �9�, and �12�, respectively. It
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is seen that ��v	 increases and �� decreases with increasing
�v. This means that if an atom experiences a large force
�compared to kBT�, it moves on average over a large distance
but the spread in this distance is small. A large force also
reduces the probability of an uphill move, i.e., a move oppo-
site to the force, which seems reasonable.

As illustration, Fig. 2 shows the full probability density
function p��x� of a particle move �x for three values of �x.
The case shown is that for a particle in a one-dimensional
quadratic potential well given by E=0.25 �eV /Å2� x2, where
x is the location of the particle in the well, and for the choice
� /2=0.2 Å. The probability distribution is shown for
�x=1, 0.5, and 0.1. At constant temperature, T=580 K, these
three curves correspond to the cases where the particle posi-

tion before the move is x=−1 Å, −0.5 Å, and −0.1 Å, re-
spectively. Clearly, as the particle is further from equilibrium
and experiences a larger force, the probability of the particle
to move in the direction of the force is higher, as can be seen
in the increasingly steeper slope of the curves. Alternatively,
if one considers the initial particle position constant,
x=−0.5 Å, the three curves in Fig. 2 correspond to three
temperatures, T=290 K, 580 K, and 2900 K, respectively.
From this viewpoint, one sees that lowering the temperature
leads to an increasing probability of moves in the direction
of the force. Thus by changing the parameter T, we can
artificially increase or decrease the effect of the force on the
displacement of the atom.

For completeness we also mention two extreme cases that
may help understanding the UFMC. The first one is when �v
tends to zero, i.e., when the temperature T is very high and/or
the force Fv on an atom is very small. In this case, the prob-
ability distribution becomes uniform, i.e., the move of the
atom is purely random and independent of the force on it,

lim
�v→0

�v = �2�v − 1� . �14�

The other extreme case is the opposite: when the temperature
T is so low and/or the force Fv on an atom is so large that �v
tends to infinity. Then the atom moves in the direction of the
force over the maximum allowed distance,

lim
�v→


�v = �+ 1, Fv � 0

− 1, Fv 	 0
� . �15�

B. UFMC simulation

In UFMC simulations, in every iteration step, 3N dis-
placements �where N is the number of atoms in the system�
of the type of Eq. �2� are calculated, with the forces derived
from the interatomic potential. As atomic velocities are not
considered, time is no longer a sensible quantity. The dura-
tion of simulations is therefore measured in iteration steps.
This makes it possible to compare the efficiency of MD and
UFMC simulations since the extra time needed for UFMC
�the evaluation of Eq. �2�� is generally negligible compared
with the evaluation of the forces. It should be understood, of
course, that the time step employed in MD was not given an
unnecessarily small value to bias this efficiency difference.
Also, with UFMC it is not possible to carry out simulations
at constant pressure, as the pressure directly depends on the
evaluation of the velocities �although one could choose to
remove the kinetic term from the pressure tensor�.

C. UFMC+ and UFMC++ simulations

In most cases, one wants to reestablish thermal equilib-
rium after a UFMC simulation, for example, because one
wants to continue with MD simulation or simply in order to
bring atoms closer to their equilibrium positions and reduce
the unphysical variety in the potential energies. This has to
start with attributing meaningful velocities to the atoms and
let the system itself evolve to equilibrium. We have used two
variants. One is giving zero velocities to all atoms and doing
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FIG. 1. Average value ��v	, standard deviation ��, and probabil-
ity of an atom to move in the direction opposite to the force
P�Fv�v	0� as a function of �v, according to Eqs. �7�, �9�, and �12�,
respectively.
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FIG. 2. Probability density function p of the particle
displacement �v in a one-dimensional quadratic potential well
E=0.25 �eV /Å2� x2, where x is the position of the atom. Curves
are plotted for �x=1, 0.5, and 0.1, referring either to the par-
ticle being at different locations x=−1, −0.5, and −0.1 �Å� at
T=580 �K� or to different temperatures T=290, 580, and 2900 �K�
with the particle at x=−0.5 �Å�. In all cases, � /2=0.2 �Å�.
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a short constant-temperature MD run with the thermostat set
at T, the temperature used in the preceding UFMC simula-
tion. The end product of this combined simulation, which we
call UMFC+, is a system in thermal equilibrium at tempera-
ture T. The second variant is, again, starting with zero atomic
velocities but this time continuing with a constant-
temperature MD run with the thermostat set at 0 K. Of
course the instantaneous temperature will momentarily be-
come finite but the end product of this, so-called UFMC++
simulation is a system quenched to 0 K. In both cases, we
find that 1.5 ps is typically long enough for the MD run to
reach equilibrium.

III. SIMULATIONS

A. Simulations and motivation

In order to systematically study the various possibilities,
speed enhancements, and reliability limits of UFMC, and
their dependence on the values of the parameters T and � /2,
we have performed a set of simulations starting from a
simple model and ending with complex simulations of phase
transitions and recrystalization of an amorphous phase. All
results will be compared with MD simulations on the same
systems. The results will be presented in order of increasing
complexity:

�1� diffusion of a single particle in a 1D sinusoidal poten-
tial,

U =
Q0

2
1 − cos�2�x

R
�� , �16�

where U is the potential energy of the system, consisting of
one particle at position x, Q0 is the potential barrier �or the
activation energy�, and R is the period of the potential. This
is a simple system, allowing easy access to all relevant in-
formation. We test UFMC by calculating, for different values
of � /2, the number of jumps over the potential barriers per
number of iteration steps, and by determining the apparent
activation energy compared to Q0 from runs at different T.

�2� 3D diffusion of a Cu adatom on a �100� Cu surface,
also for different T and � /2. This situation is closer to real-
ity, yet it is still a single-atom process, i.e., there are no other
processes disturbing the diffusion of the adatom. Again, our
main objective is to find the apparent activation energies and
the speed enhancements for various values of the UFMC
parameters.

�3� A perfect Si crystal, periodic in all directions, kept at
various constant temperatures below melting. The objective
of these 3D bulk simulations is not to study atomic transition
rates but to investigate how much UFMC will increase the
energy, introduce disorder, and possibly create temporary va-
cancies that lead to diffusion, all in a system that is thermo-
dynamically in a static state. Also we wanted to find out
under which conditions the system will cease to return to its
initial perfect-crystal state, thereby signaling the onset of un-
safe simulation conditions. In short, these simulations were
performed to explore the edges of UFMC. Somewhat mov-
ing up in complexity, we have also performed simulations of
a Si crystal with two �100� surfaces, to see if the presence of

a surface would possibly lead to the formation of unphysical
surface features that could penetrate into the bulk.

�4� Formation of amorphous Si by cooling of the liquid
and crystallization of the amorphous phase by heating. Using
MD, these are time-consuming simulations. Even worse, to
produce an amorphous phase in a way compatible with the
experiment, the cooling of the liquid should take microsec-
onds or longer while MD allows atmost nanosecond-scale
cooling simulations. In order to see what time acceleration
can be reached with UFMC and how reliable the results are,
we have performed simulations of phase transitions by
UFMC+ and compared it with MD.

�5� Recrystallization of an amorphous phase formed on
top of a Si crystal formed by bombardment of a �100� Si
surface by 500 eV Ar atoms. Again, in MD these are time-
consuming simulations, and UFMC can be used to speed
them up. However, recrystallization is a complex process,
and we wanted to investigate if all aspects of the process,
or just the recystallized end product, will be similar in MD
and UFMC, and how close this similarity is. For this,
UFMC++ simulations of annealing the amorphous/crystal
system were performed at different temperatures T and with
different � /2 values.

B. Simulation details

The UFMC and MD simulations of copper �001� adatom
diffusion were performed for a crystal of 25.3 Å thickness
with a surface area of 32.532.5 Å2 or 99 unit cells. The
Cu-Cu interactions were described by the Oh-Johnson em-
bedded atom method �EAM� potential.5

The UFMC and MD simulations of pure silicon
with the cubic diamond structure were performed for a
818181 Å3 system, containing 27 000 Si atoms. This
density corresponds with the experimental value at 0 K. Si-Si
interactions were described with a recent parameterization of
the modified embedded atom method potential, called
MEAM-L. With the exception of the too high melting tem-
perature �2990 K�, this potential describes silicon properties
better that many other potentials.6,7 All UFMC and MD
simulations were done at constant volume unless �for MD�
indicated otherwise.

The UFMC+ and MD simulations of phase transitions
during cooling liquid Si and heating amorphous Si were done
for a system of 13 824 atoms. The MD simulation was per-
formed at constant atmospheric pressure. Si liquid was
cooled to room temperature and subsequently heated to the
melting temperature with a cooling/heating rate of 0.91K/ps.
In the UFMC simulation, the initial liquid and amorphous
phases were obtained from MD. Therefore, the volumes of
the liquid and amorphous phase were different, 279.2 nm3

and 273.6 nm3, respectively. This difference between UFMC
and MD is not considered essential, as a volume change in
this size makes only a very minor contribution to the poten-
tial energy compared with the phase transitions themselves.

In the UFMC++ and MD annealing simulations of the
amorphous phase formed by 500eV Ar sputter bombardment
of a Si crystal, the amorphous phase was 20 Å thick and
contained Ar impurities. The system, with a surface area of

TIMONOVA, GROENEWEGEN, AND THIJSSE PHYSICAL REVIEW B 81, 144107 �2010�

144107-4



8181 Å2, consisted of 195 Ar and 25 209 Si atoms. The
MD simulations of the Ar bombardment and the subsequent
annealing at different temperatures will be reported later.8

Ar-Si and Ar-Ar interactions were described with the Firsov-
Molière pair potential.9 This potential was also used for Si-Si
interactions at short distances.

In general, MD does not use a maximum displacement
parameter in the same way as UFMC. However, the current
MD implementation does employ a distance parameter rm. It
has the following role. In each iteration, the MD code scales
the time step in such a way that no atom in the system will
travel a distance greater than rm given its velocity and accel-
eration. The value for rm normally used in MD is 0.02 Å, as
followed from numerical experiments of computational effi-
ciency versus dynamical precision, and this distance could be
regarded as a maximum displacement distance in the same
spirit as � /2. It is much smaller than the values that we will
use for � /2. In order to examine whether an increase in rm
would speed up the simulations in the same way as UFMC,
we have also performed MD simulations with a higher rm
value, 0.14 Å �Secs. IV A and IV B�. All MD simulations
were run with the velocity Verlet integration method, em-
ploying the maximum-distance method just mentioned for
automatic time step determination. As an example, for the
system at room temperature, the average time step is 1.2 fs,
and at 2024 K it has dropped to 0.5 fs. The overall tempera-
ture of the system was controlled by using Berendsen
damped velocity scaling with a time constant of 18 fs, ap-
plied to all atoms in the system.

C. Quasivacancies

To be able to identify pointlike defects that can be defined
in atomic models of different kinds of condensed matter, we
make use of the concept of quasivacancies �QVs�. These are
defined as follows. An atom i, at position ri, is said to have
an associated “missing atom” if the vector �Ri�� j�r j −ri�,
where the atoms j are the neighbors of i, has a length of at
least 80% of the nearest-neighbor distance �using 80%
instead of 100% allows for some structural and thermal
disorder�. The missing atom is then considered to lie at
rMA=ri−�Ri. We next scale the missing atom concentration
into a QV concentration by dividing it by the local coordi-

nation number Z of the atoms �in this case, Z=4 everywhere
in the system�. This yields a defect concentration that, in a
crystal, exactly matches the true vacancy concentration.
Hence the name quasivacancies. The advantage of quasiva-
cancies is that they are defined not only in a crystal but also
in a liquid or amorphous phase.

IV. RESULTS

A. Diffusion

1. One-dimensional diffusion

1D simulations of the diffusion of a particle in the simple
sinusoidal potential of Eq. �16� were performed for a barrier
energy Q0=0.25 eV and a period length R=1 Å. Values up
to 0.5 Å were used for � /2, which is 50% of R, i.e., 50% of
the jump distance. Values between 500 and 850 K were used
for T. For each � /2, the apparent activation energy was
found by fitting the logarithm of the number of jumps versus
1 /T by the Arrhenius expression,

ln� n

NI
� = −

Q

kBT
+ ln��0t

NI
� , �17�

where n is the number of jumps observed in NI iteration steps
and Q is the apparent activation energy. The attempt fre-
quency �0 and time duration t are quantities that have no
meaning in UFMC itself but spring into existence as soon as
the Arrhenius picture is joined in. The apparent activation
energy Q is shown as a function of � /2 in Fig. 3�a�. Each
energy is calculated as the mean slope resulting from the 20
weighted least-square fits of the ln�n /NI� data as a linear
function of 1 /T �Eq. �17�� for each of 20 replica runs. The
error bar shows the rms error of this average slope. It is
found that Q is virtually equal to Q0 for very small � /2 and
decays to 0.16 eV, or 0.65Q0, for � /2=0.20 Å. This
means that increasing � /2 to 20% of the jump distance leads
to a significant decrease in the energy barrier, and therefore
to an easier activation of particle diffusion. Clearly this de-
crease in the energy barrier is one of the mechanisms by
which UFMC operates.

The fact that for small values of � /2, the apparent acti-
vation energy is very nearly equal to Q0 shows that the
UFMC parameter T can be considered as a realistic tempera-
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FIG. 3. �a� Apparent activation
energy Q for a particle diffusing
in the sinusoidal potential of Eq.
�17�, as a function of � /2. �b�
Temperature dependence of the
relative number of jumps of a Cu
adatoms on �100� Cu surface in
MD simulations and in UFMC
simulations using � /2=0.27 �Å�
�which is 11% of the jump dis-
tance Req�.
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ture, and that the use of the factor 2 in Eqs. �3� and �6� is
therefore justified. To see this, one should realize that if we
would have used a UFMC version without the seemingly
suspicious factor 2 in Eq. �4� or �6�, we would have obtained
from the fit of Eq. �17� a Q that would be exactly two times
as large as the Q that we have found here. This would have
led to a very unrealistic Fig. 3�a�. Later we will find more
evidence of the functioning of T as a realistic temperature.

Although these results are complete by themselves, from
the intercepts of the fits of Eq. �17� the simulated time per
iteration step t /NI can be estimated as a function of � /2 for
a chosen practical case. For this, we use �0=1.61013 s−1, a
value calculated directly from transition state theory10 and a
harmonic potential for copper. We find that t /NI increases
with � /2, reaching the value 1.7 fs/step for � /2=0.20 Å.
Again it should be mentioned that in order to make the trans-
lation from UFMC iteration steps to time, one needs an in-
dependent time-related quantity as additional input.

2. Three-dimensional simulation of surface diffusion

In three-dimensional UFMC and MD simulations of sur-
face diffusion of a Cu adatom on a fcc �001� Cu surface, the
temperature range from 500 to 1050 K was explored. The
UFMC simulations were performed with � /2=0.27 Å. This
value is 11% of the distance between nearest adatom posi-
tions, which is the same as the nearest-neighbor distance
Req=2.56 Å. The relative number of jumps of the Cu ada-
tom, n /NI, versus the inverse of the temperature is shown in
Fig. 3�b�. From the fit of Eq. �17�, the activation energy Q
was found to be 0.26 eV for UFMC and 0.39 eV for MD,
both with an uncertainty of 10%. The MD value of the acti-
vation energy is in excellent agreement with the experiment,
0.4eV.11 The UFMC value is about 67% of the MD value.
This is not very far from the approximate ratio 0.7 that is
seen in Fig. 3�a� for � /2=0.11 Å. It suggests that the per-
centage lowering of the activation energy may be a universal
function of �� /2� /R, where R is the jump distance. More
work is needed in this area.

From the intercept of the fit of Eq. �17� to the UFMC
results, the simulated time per iteration step t /NI was calcu-
lated using �0=1.61013 s−1 found from the MD simula-
tion. The resulting t /NI value is 1.7 fs/step, compared to the
MD value 0.9fs/step, a speed boost is of a factor 1.9.

Increase in the MD parameter rm also accelerates simula-
tions. As an example, an MD simulation of the adatom dif-
fusion executed with rm=0.14 Å, seven times larger than the
normal value 0.02 Å, runs 67% faster for the same number
of observed atom jumps. Therefore, for this type of simula-
tion result, the MD method also offers a viable speed in-
crease method. However, as we will see later, in other cases
UFMC will be preferable.

B. Si crystal

UFMC simulations of diamond-cubic Si were done at
different temperatures T in the range from 10 to 2500 K,
which is below the melting point 2990 K according to the
MEAM-L potential, and using values for � /2 between 0.134
and 0.403 Å or 6–17 % of the nearest-neighbor distance
Req=2.35 Å. In relative sense, this � /2 range is comparable
to the range used for the 1D diffusion �Fig. 3�a��. For
comparison it is noted that the rms vibrational displacement
of the Si atoms is 0.134 Å at T=170 K and 0.403 Å at
T=1830 K according to MD. It may be tempting to use
these values as an approximate way to map � /2 length val-
ues onto thermal disorder values but see below. As UFMC
does not use classical mechanics to calculate the trajectories
�moves� of atoms, contrary to MD, we perform this study to
analyze the differences between UFMC and MD in general
terms and from different viewpoints. As there are no vacan-
cies in the system, we should not expect diffusion to take
place in the crystal, at least not at first; these simulations
were therefore not intended to study the lowering of an ef-
fective activation energy. Also, because no significant events
happen in the MD simulations �apart from atomic vibra-
tions�, there is no gain in computational time that could be
defined. Rather, we seek to find out how UFMC influences a
perfect crystal in terms of its structure, energy, and phase
transitions. The graphs shown display average values after
the simulations have reached their steady state.

Let us first look at the distribution of the potential ener-
gies of the atoms in the crystal. Figures 4�a� and 4�b� show
the average value E and the standard deviation �E as a func-
tion of T for UFMC and MD. Clearly UFMC produces extra
potential energy compared to MD, the extra amount increas-
ing rapidly with � /2 but decreasing with T. The same trend
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is found for �E. We can understand this by realizing that,
atomic forces being equal, the quantity �v also increases with
� /2 and decreases with T, see Eq. �3�. Figure 1 shows that
this, in turn, causes the average magnitude of the atomic
moves, ��v	 � /2, to increase with � /2 and decrease with T.
Consequently, we can understand that larger average UFMC
moves lead to more energy and more energy spread in the
system. This is a very reasonable result. It should be noted,
however, that the values of the energy increase and the
energy spread increase by UFMC are quite considerable,
as Figs. 4�a� and 4�b� show. The jump in the results for
� /2=0.16Req when the temperature decreases from 1000 to
500 K turns out to be a universal feature in these simulations.
We will find it later, too, and discuss it there.

To find out to what extent the difference in E is related to
the formation of defects, we will use the temperature depen-
dence of the concentration of QVs, defined in Sec. III C.
Figure 5 displays the crystal-averaged QV concentrations as
a function of T for different � /2. The curves show the same
trends as the mean potential energy in Fig. 4�a�: the differ-
ences with MD increase with � /2 and decreases with T. Also
the jump in the results for � /2=0.16Req between 500 and
1000 K is seen in these data. Note that the concentration of
quasivacancies in UFMC can become very high while in the
MD simulation even near the melting point, the concentra-
tion stays below 1%. It should be noted that in terms of QV
concentrations there is a great difference between UFMC and
rm-increased MD as speed enhancement methods. If rm is
increased by a factor of 8, or even 15, which makes it equal
to 7% or 13% of Req, the QV concentration in the MD simu-
lation hardly changes, and it certainly does not become as
high as in UFMC with 0.06Req or 0.14Req, respectively.

Two questions come up in relation to the energy increase
and the defect production by UFMC. One is whether or not
the system will settle down to the crystalline state if the
UFMC simulation is extended by MD �i.e., if a UFMC+
simulation is performed�. The other question is even more
stringent, namely, whether after UFMC++ each atom has
resumed its original crystal position.

UFMC+ simulations were performed to answer the first
question. It turns out that there is a crucial difference be-

tween the results for � /2=0.17Req and those for lower � /2.
For lower � /2, the MD part of UFMC+ returns the energy E,
�E, and the quasivacancy concentration of the system to the
proper MD values, i.e., to the values as if no UFMC had
occurred. In other words, for lower � /2, the diamond-cubic
Si crystal is recovered. In contrast, for � /2=0.17Req, and
most probably also for higher values, MD cannot return the
system to the crystal phase after UFMC and leaves it in a
high-energy, high-defect state �full circles in Figs. 4�a�, 4�b�,
and 5�. In fact, as we will shortly see �Fig. 9�, the structure
is not far from the liquid or amorphous structure. One
may therefore conclude that for UFMC applied to this par-
ticular system there is a sharp “phase boundary” between
� /2=0.16Req and 0.17Req. As an interesting exception, the
500 K UFMC results for 0.16Req should be grouped with
those for 0.17Req; this system, too, stays in the disordered
state after MD. Apparently this was the significance of
the jump in the results for � /2=0.16Req between 500 and
1000 K mentioned earlier. Again these results show that too
high values of � /2, especially at low T, may be unsafe.

To answer the second question, whether or not atoms re-
turn to their original crystal position, we performed a set of
UFMC++ simulations and calculated for each atom the
quantity �nda, being the number of departed “old” neighbors
plus arrived “new” neighbors, comparing the situations be-
fore and after UFMC++. A single swap of two atoms in the
crystal is accompanied by �nda�6 neighbors �at least three
neighbors depart and three others arrive� for each of the at-
oms. Therefore, we consider �nda=6 as a minimal indication
of an atomic jump. It is found that after UFMC++ with
� /2�0.11Req, all the atoms are placed at the original posi-
tions for all UFMC temperatures, showing that the QVs
formed during the UFMC phase appear as parts of temporary
Frenkel pairs. In contrast, with � /2=0.14Req, at T=101 K,
4.1% of atoms have �nda�6 after 104 iteration steps. Al-
ready at 202 K, this fraction decreases to 0.04% and it be-
comes even smaller with increasing T. A zero value is ob-
served at 1012 K and at 2024 K, the number has slightly
increased to 0.002%. This trend is very similar to the trend of
the average atomic potential energy. We conclude that when
the average potential energy is high �at low T�, the conditions
are favorable for the exchange of atomic positions. We do
not call this process diffusion, as in this perfect crystal there
is no diffusion at low temperatures. We will use the term
“exchanges of atomic positions” because the percentage of
atoms with �nda�8 �these atoms certainly form point de-
fects� at 101 K is negligible �only 0.02%� and rapidly de-
creases to zero with T.

At this point, we want to make the following remark. The
fact that there are parameter ranges for which UFMC++
simulations leave a perfect crystal fully intact does not
mean that within those parameter ranges UFMC++ cannot
accomplish anything. On the contrary, it only shows that pro-
cesses such as vacancy-interstitial pair creation, with very
high activation energies, do not occur spontaneously under
UFMC++ �in the time regime of the simulation�. All
processes with smaller activation energies, however, will
certainly have a finite probability of occurring under
UFMC++, the probability increasing as the activation energy
gets smaller and this is also what we observe.
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We will next investigate whether the average atomic po-
tential energy E during UFMC is a good indicator of atomic
position exchange in the crystal after UFMC+ or UFMC++.
First of all, for � /2=0.14Req, with increasing T the percent-
age of atomic exchanges becomes negligibly small already
at 202 K, when E is approximately −3.5 eV. Therefore,
we may consider this value as the lower-energy limit. It is
supported by the fact that for � /2�0.11Req, at all T, when
the potential energy never exceeds −3.5 eV, no single
atomic swap is observed, and for 0.15Req, at 303 K,
when E=−3.3 eV, already 4.6% of the atoms have changed
at least six neighbors. At higher T, the potential energy
decreases and simultaneously the percentage decreases
to nearly zero. Also, for � /2�0.16Req, when T is above
1000 K and E=−3.5�0.05 eV, the system returns to the
crystal phase after UFMC+. All evidence points to −3.5 eV
as the lower-energy limit for atomic exchange. An alternative
formulation is 1.1 eV above the ground-state �0 K� energy of
the perfect crystal.

In order to find out if a surface can act as a nucleation
point for the disordering of the type that was observed with-
out surfaces for � /2=0.17Req, UFMC was applied with
smaller values, � /2�0.14Req, to a Si crystal with a free and
a fixed �100� surface. Atoms at the fixed surface were har-
monically bound to their crystal locations so that nothing
significant was expected to happen for these atoms. If any
defect nucleation would occur, it would happen at the free
surface. However, no such thing was observed. In fact, the
energies during UFMC with surfaces were very similar to the
ones shown in Fig. 4�a� without surfaces. In addition, after a
small number of iteration steps, the free surface dimerized.
All this is reassuring and indicates that UFMC may be ap-
plied equally well in the bulk as at a surface.

In conclusion, a careful choice of the parameters T and
especially � /2 is needed to prevent UFMC+ simulations
from driving a system so far from its state that it will no
longer return to equilibrium. For the present case, crystalline
silicon, we find that � /2=0.16Req is the highest value that
can be applied just safely, although at low temperatures �be-
low 1000 K�, this value is already too high, and 0.15 or 0.14
will be safer. Even so, the fact that the system returns to its
equilibrium state does not mean that all the atoms at their
original positions. If the atomic potential energy reaches a
value above −3.5 eV during UFMC, which is more probable
at lower T, atoms tend to swap. If the system consists of a
single element, this may not cause any trouble. But in a
system of two or more elements, swaps of atoms may cause
formation of undesirable defects that prevent the system
from returning to the original crystal phase after UFMC+ or
UFMC++. In this case, the value of potential-energy limit
should be recalculated according to the specific elements and
equilibrium structure. In general, the results appear to show
that creation of quasivacancies and atomic swaps very likely
is the essential mechanism by which UFMC reaches equilib-
rium, and that this may lead to large computational accelera-
tions when the concentration of these defects is sufficiently
high. As mentioned earlier, the same acceleration cannot be
reached by increasing the MD parameter rm, as this does not
lead to the formation of quasivacancies. We will have a fur-
ther look at these advantages of UFMC over MD in the next

section. Clearly if exchange of atomic positions cannot be
tolerated at all in a particular application, UFMC should only
be used in conditions that are absolutely safe. Note that we
claim no universality of the present results. For example,
some of the observations may be quite different for a close-
packed crystal such as Cu.

C. Phase transitions

To find out if the UFMC method can be applied to study
phase transitions and what values of � /2 should be used, we
have performed UFMC+ simulations of cooling liquid Si to
room temperature and heating amorphous Si from room tem-
perature to the melting point �2990 K�. The simulations were
done with � /2=0.06Req, 0.11Req, and 0.14Req, at tempera-
tures T from 303 to 3036 K. During cooling and heating, the
temperature was changed in jumps of either 200 or 300 K,
and at each new temperature, 2105 UFMC iteration steps
were executed. This makes the average cooling/heating rate
1 mK/step or 1.5 mK/step, respectively. At the end of every
2105 steps, the configurations were saved and brought to
real equilibrium in separate MD runs �or rather: real meta-
stable equilibrium�.

The initial amorphous and liquid systems for the
UFMC+ simulations were taken from MD simulations
of cooling the liquid and reheating it to the melting point
with a cooling/heating rate of 0.91 K/ps �Ref. 7�. For com-
parison with the UFMC+ simulations, the potential energy
during these cooling and heating MD runs is shown in
Figs. 6�a�–6�c�, along with that during a third MD run of
heating crystalline Si. The MD results show amorphization
�A� of the liquid around 2000 K during cooling and a glass
transition �G� at 2100 K during subsequent heating, followed
by crystallization �C� at 2350 K and melting �M� at 3050 K.
Here all temperatures are quoted at the halfway points of the
transitions. The crystallized MD system was polycrystalline
with a biggest grain of about 45 nm3 in the whole sample of
273.6 nm3.

It is seen in Fig. 6�a� that UFMC+ with � /2=0.06Req
very closely reproduces the MD results of cooling the liquid.
Again this can be seen as an indication that the temperature
parameter employed in UFMC is in fact a realistic tempera-
ture. At room temperature, the amorphous phase is well re-
laxed and the potential energy matches the MD value within
0.005eV/atom. Here, the reduced radial distribution function
�RDF� is used to characterize a liquid or amorphous phase. It
is defined as

G�r� = 4�r�d�r� − d0� �18�

with d�r� the average number density at a distance r from an
atom in the system and d0 the overall number density in the
system. The RDFs for the amorphous phases at 303 K simu-
lated by UFMC+ and MD are presented in Fig. 7. They are
very much alike, with the average coordination number for
UFMC+ �4.25� being slightly lower than for MD �4.61�. This
difference in coordination number is accompanied by a
slightly higher concentration of QVs �17%� compared to that
in MD �7.4%�. Interestingly, the small secondary peak in the
MD curve at 3 Å is absent for UFMC+. The reason for this
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difference is unknown. On heating, the amorphous phase
does not crystallize as in MD. In a sense, this situation is
similar to MD with a ten times higher heating rate �9.1 K/ps�
than used here, for which also no crystallization was
observed.7 There seem to be simply not enough mobility for
crystallization. Apparently the small value � /2=0.06Req pre-
vents crystallization by holding atoms too closely near their
positions in the amorphous phase, and the other UFMC

parameter T cannot change this, even while at low-T atoms
move over longer distances and while at high-T atoms move
more often in the direction opposite to the force and could be
expected to cross the energy barrier between the amorphous
and crystal phases. It should be stressed that this absence of
crystallization is observed for a homogeneous system, one
without nuclei for crystallization.

We conclude that with the small value � /2=0.06Req,
UFMC+ can be used to form a well-relaxed amorphous
phase from the liquid but not to crystallize the amorphous
phase. The acceleration that can be obtained by using
UFMC+ is very high. It takes at least two orders of magni-
tude fewer iteration steps to produce the UFMC+ cooling
curves than the MD cooling curves in Fig. 6�a�, and both
lead to virtually the same amorphous state.

A different behavior is observed during UFMC+ with
larger � /2. For � /2=0.11Req, we see in Fig. 6�b� that in-
stead of amorphization of the liquid during cooling, the
system crystallizes at 2000 K. Also, instead of a gradual
liquefaction of the amorphous phase during heating, the
system crystallizes, already at 300 K. The melting of these
crystals occurs at 3100 K, slightly later than for MD. For
� /2=0.14Req as seen in Fig. 6�c�, these temperatures are
1600 K, 600 K, and 3000 K, respectively. The crystallized
structures obtained by cooling the liquid and heating the
amorphous phase for � /2=0.11Req are both polycrystals
shown at 303 K in Figs. 8�a� and 8�b�. Of the two, the crys-
tallized liquid has fewer defects, and its average atomic po-
tential energy E is closer to that in crystal. In fact, the crys-
tallized liquid is a monocrystal containing just two small
crystallites of different orientations. One is 4 nm3 and the
other is 17 nm3 in the whole sample of 273.6 nm3. In con-
trast, the crystallized amorphous phase consists of many
crystallites of different sizes. The size of the biggest is
74 nm3, which is 27% of the whole volume of the system.
The recrystallized liquid has larger grains because it was
formed at significantly higher temperature.

When � /2=0.06Req and 0.11Req are compared, it is clear
that a greater � /2 value is analogous to a slower heating or
cooling rate: conditions are such that crystallization can take
place. Apparently the crystallization is enabled by the forma-
tion and diffusion of defects, such as those earlier observed
in the crystal �Sec. IV B�. Because a greater � /2 was found
to generate more defects, it can be concluded that these de-
fects act as vehicles in the process of crystallization. All this
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in UFMC+ simulations with � /2=0.11Req. during �a� cooling the
liquid and �b� heating the amorphous phase.
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has no general validity, however, because the even greater
value � /2=0.14Req generates even more defects �Fig. 5�, yet
the crystallization behavior that was found �Fig. 6�c�� is
rather unphysical. Compared to � /2=0.11Req �Fig. 6�b��, it
is hard to understand why the liquid would crystallize at a
lower temperature and the amorphous phase at a higher tem-
perature. Apparently � /2=0.14Req introduces spurious ef-
fects and is a too high value to study these phase transitions
by UFMC.

Finally we will use the RDFs of Fig. 9 to have a look
at the liquids produced by UFMC+ and compare them with
the MD liquid �bottom curve�. The two middle curves are
the UFMC+ liquids formed with � /2=0.06Req and
� /2=0.11Req just above the melting point. The results
for � /2=0.11Req are almost indistinguishable from the
MD results, which is a very encouraging results. For
� /2=0.06Req, the maxima and minima of the RDF lie at
the same positions but they are somewhat more pronounced.
The average coordination number in this liquid is 5.33,
which is slightly lower than the values 5.52 for UFMC+ with
� /2=0.11Req and 5.65 for MD.

Earlier it was shown that using the high value � /2
=0.17Req and apply UFMC+ to the silicon crystal at tem-
peratures below the melting temperature produces a system
that stays in a disordered state. The two top curves in Fig. 9
show the results of this treatment for two temperatures, 506
and 2530 K. It can be seen that in both cases, the RDFs are
surprisingly similar to the MD liquid. Although the coordi-
nation numbers are a little different,5.35 at 506 K and 5.27 at
2530 K versus 5.65 for MD,7 it is safe to say that a too high
value of � /2 lets UFMC+ produce a liquid under conditions
where the crystalline phase is thermodynamically stable.

In conclusion, we find that UFMC+ models phase transi-
tions and produces liquid and amorphous structures compa-
rable with MD and in a smaller number of iteration steps. It
can be applied very efficiently for crystallization and relax-
ation of the amorphous phase. The UFMC parameters have
to be chosen according to the simulation of the desired pro-
cess. Using the lower value � /2=0.06Req would be more
appropriate for relaxation. Comparison of the MD and
UFMC+ results shows that amorphization and glass transi-
tion take place at the same temperatures. To observe crystal-
lization of the amorphous phase upon heating or even of
the liquid upon cooling �something not possible with
MD with cooling rates as low as 0.91 K/ps�, higher values
� /2�0.11Req have to be applied. The crystallized amor-
phous phase is a polycrystal.

D. Annealing of the amorphous phase
produced by sputter bombardment

To see how UFMC performs in a more complicated situ-
ation, we have carried out UFMC++ simulations of anneal-
ing a Si crystal with two �001� surfaces, one kept static and
one left free. The free surface had been amorphized by prior
500 eV Ar bombardment.6 The amorphous phase is approxi-
mately 25–30 Å thick and is characterized by a mean coor-
dination number of 4.63 at zero temperature, a density vary-
ing within 5% of the crystal density, and a maximum local
QV concentration of 18% �in the middle of the amorphous
part�.8 As a side remark, we mention that compared with the
amorphous phase produced by cooling the liquid to room
temperature �Sec. IV C�, the amorphous phase produced by
particle bombardment has a higher coordination number and
virtually the same QV concentration. The difference in coor-
dination number shows that by cooling the liquid, the formed
amorphous phase is more relaxed. This seems reasonable
because the temperature started from a value as high as 2990
K while during bombardment most of the time it was kept
at 303 K. The purpose of the annealing simulations was
to study recrystallization by UFMC++. The difference with
the crystallization of the amorphous phase discussed in
Sec. IV C is that here the amorphous phase has a “natural”
interface with the crystalline phase so that many nucleation
sites for crystallization are present.

The UFMC annealing temperatures T range from 303 to
2530 K, all below the MEAM-L melting temperature of 2990
K, and the values used for � /2 are 0.06Req, 0.11Req, and
0.14Req. The outcome of the simulations is shown in Figs. 10
and 11, where the UFMC++ results are compared with the
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MD results,8 which were obtained at the same temperatures
followed by quenching the system to 0 K. Figure 10 shows
the average potential energy E per atom versus the number
of iteration steps in the simulations. Figure 11 shows snap-
shots of the system at the end of these runs and lists the
percentage of evaporated Ar atoms and the maximum local
QV concentration at the end. As a special reproducibility
test, we have repeated some of the UFMC++ simulations
under the same conditions and with the same initial configu-
rations. The potential-energy curves reproduced very closely,
showing that in spite of the random moves of the atoms, the
UFMC method converges to stable results.

It is found that after the UFMC++ simulations with
� /2=0.06Req at all temperatures, the recrystallized
amorphous-phase fraction is about the same as after MD
�Fig. 11�. In addition, the final potential energies are also
nearly the same �Figs. 10�a� and 10�b�� but number of steps
needed in UFMC++ to reach the same level as in MD is
only about 20% of that in MD. On this accelerated scale,
UFMC++ lags slightly behind MD in removing the quasiva-
cancies and in letting the Ar impurity atoms evaporate. At
303 K, there is no recrystallization but only a relaxation of
the amorphous phase. The average coordination number de-
creases from 4.63 to 4.61, the potential energy drops only
slightly �0.01 eV/atom�, and the concentration of QVs stays
the same. Partial recrystallization is observed at 1518 K, and
the temperature has to be increased to T=2530 K before
�almost� complete recrystallization of the amorphous phase

occurs. The potential energy then decreases by 0.14 to
−4.54 eV /atom, a value only 0.04 eV higher than that of the
perfect crystal with two surfaces. This difference is due to
the fact that there are still impurities �Ar atoms, which have
a very high potential energy compared with Si atoms� and
other defects in the recrystallized amorphous phase.

For � /2�0.11Req, the amorphous phase fully recrystal-
lizes already at 303 K �Fig. 11�, although the surface in the
303 K picture of Fig. 11 for � /2=0.11Req seems to suggest
otherwise �we come back to this�. In spite of this full recrys-
tallization, the potential-energy curves in Figs. 10�c� and
10�d� do not all decrease to −4.54 eV /atom, the value just
found for full crystallization. The reason lies in the unequal
balance of positive and negative contributions to the energy.
The residual defects have a stronger effect on the energy than
the crystallization of the amorphous phase. Coming back to
the surface region of the system annealed at 303 K with
0.11Req, which does not look recrystallized, one sees on
closer inspection that it in fact contains two crystallites of
different orientation than the whole crystal. These crystal-
lites, a few monolayers thick, were formed because of accu-
mulation of the defects that were left behind after the passing
of the crystallization front. Later these defects reorganized
and isolated two small crystallite parts from the rest of the
crystal. Apparently the presence of these defects made it en-
ergetically favorable for the crystallites to appear in a differ-
ent orientation.

For the UFMC++ simulations, the general trends ob-
served are that increasing T and increasing � /2 decrease the
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FIG. 10. Average potential en-
ergy E per atom versus number of
iteration steps divided by 105 in
�a� MD simulations �Ref. 9� and
in ��b�–�d�� UFMC++ simulations
with � /2=0.06Req, 0.11Req, and
0.14Req, respectively. The four
different annealing temperatures
are indicated in the legends. The
horizontal dashed line in each fig-
ure denotes the energy of a perfect
crystal with a dimerized �100�
surface.
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number of residual defects �Fig. 11�. However, there are ex-
ceptions. For � /2=0.14Req, the system still contains unex-
pectedly high concentrations of residual defects after
UFMC++ at 2024 and 1518 K. At 303 K, the situation is less
clear but especially the QV concentration is still quite large.
All this might be connected with the crystallization speed.
Contrary to the situation for lower values of � /2, for 0.14Req
the recrystallization proceeds faster at lower temperatures
�Fig. 11�d��. This effect is very likely related to the steep
increase in the quasivacancy concentration with decreasing
temperature for 0.14Req �Fig. 5�. When the crystallization
front passes fast, Ar atoms, which are concentrated in the
amorphous phase, do not have enough time to reach the sur-
face and evaporate. As a result, they stay in the crystal. Fig-
ure 10�d� shows that up to 2024 K, crystallization is com-
pleted within 0.5105, which is apparently too soon. At the
highest temperature �2530 K�, the crystallization speed is
slower so more Ar atoms evaporate. With � /2�0.11Req, the
crystallization speed is slow enough at all T.

Another unexpected observation with 0.14Req is the sub-
stantial increase in the potential energy shortly after starting
the UFMC++ simulation. This increase becomes clear if
Fig. 10�d� is compared with Fig. 10�b�. One would expect
that the final MD part of UFMC++ would bring the system
after UFMC back to its “proper” energy value, just as was

observed earlier for crystalline Si. This is not what happens.
Apparently the presence of a sizeable amorphous phase
slows down or obstructs the removal of the many defects
generated with 0.14Req by the 1.5 ps MD runs. As soon as
most of this phase is recrystallized, however, the MD runs
following UFMC are capable to return the energy to its
proper value.

Looking at the process dynamics as a whole, for all in-
vestigated values of � /2 and T, recrystallization in UFMC
proceeds in the same way as in MD.8 It starts at the
amorphous-crystal interface and advances roughly logarith-
mically with the number of iteration steps �Fig. 10�. This
nonlinear behavior is very likely due to the proximity of
the surface, which progressively slows down the dynamics
as the crystalline/amorphous interface approaches. During
recrystallization, Si and Ar atoms are highly mobile. They
diffuse over distances in the ranges 9–14 Å �Si� and
25–30 Å �Ar�, depending on T, and the atoms completely
change their local neighbors. The observed diffusion is com-
parable with MD. Defects that were in the crystal near the
interface before annealing annihilate only partly. Defects that
were in the amorphous phase and stayed in the system after
the passing of the recrystallization front diffuse and ran-
domly annihilate. If defects reach the surface, they evapo-
rate.

MD UFMC++
∆/2 = 0.06Req ∆/2 = 0.11Req ∆/2 = 0.14Req

30
3
(K
)

0 % Ar evapor.
17 % QV

0 % Ar evapor.
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2.5 % QV

17 % Ar evapor.
2.5 % QV

15
18
(K
)

8.7 % Ar evapor.
16 % QV

3.6 % Ar evapor.
11 % QV

33 % Ar evapor.
2 % QV

15 % Ar evapor.
4 % QV
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)

12 % Ar evapor.
8 % QV

8,7 % Ar evapor.
8 % QV

71 % Ar evapor.
1.8 % QV

19 % Ar evapor.
2.5 % QV
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30
(K
)

88 % Ar evapor.
2 % QV

60 % Ar evapor.
1 % QV

78 % Ar evapor.
1 % QV
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1 % QV

FIG. 11. Views of the systems after annealing at different temperatures by MD �Ref. 9� and by UFMC++ with � /2=0.06Req, 0.11Req,
and 0.14Req. The percentage of evaporated Ar atoms and the maximum local QV concentration at the end are indicated for each case.
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From all evidence presented it can be concluded that
UFMC++ performs well in modeling recrystallization of a
partly amorphized silicon crystal during annealing. The re-
crystallization proceeds in a very similar way as in MD but
needs fewer iteration steps. The value 0.11Req for � /2 seems
to be a good compromise between physically meaningful
results and computational efficiency. When the process itself
is less important and one needs to crystallize a system in an
even faster way, a value of 0.14Req or possibly even higher
can be recommended. With � /2=0.06Req, UFMC can be ap-
plied for relaxation of the amorphous phase. As an example,
it can be used in simulations of surface bombardment to
speed up the relaxation of the formed amorphous phase, and
thereby to artificially increase the time between successive
projectile impacts in order to let the projectile flux appear to
be closer to the experimental value.

V. CONCLUSIONS

We have studied the applicability of the UFMC method,
determined safe parameter limits, within which UFMC simu-
lations produce results comparable with MD, and identified
the main ways in which UFMC operates. It has been found
that when the parameter values are within their limits, the
main asset of the UFMC method is the computational speed
increase in UFMC over MD, which can be very high and
mostly depends on the UFMC parameter � /2. At the same
time, the UFMC method followed by a short MD equilibra-
tion approximates real process dynamics and gives proper
physical properties of the system.

We demonstrated that the UFMC method can be applied
to simulations of a large variety of processes: surface diffu-
sion, amorphization, melting, glass transition, and crystalli-
zation. However, if the UFMC parameters are too high, the
method can give unphysical results. In this respect, the
choice of � /2 is particularly critical. To perform reliable
simulations, proper values of the two UFMC parameters � /2
and T should be chosen. A reasonable criterion is that a per-
fect crystal after UFMC+ or UFMC++ �i.e., UFMC fol-
lowed by a short MD equilibration� should still be a crystal,
without the formation of additional defects and—if this is
important—with all atoms at their original positions. This
effectively says that processes with a lower activation energy
than vacancy-interstitial formation are allowed to happen.
This criterion is satisfied for crystalline Si with the MEAM-L
potential by � /2�0.15Req and T about or above room tem-
perature, i.e., when the average potential energy stays below
−3.5 eV during UFMC.

For simulation of phase transitions, performed as a test of
UFMC and presented as cases where UFMC prevails over
MD, the choice of the UFMC parameter values depends on
the desired computational speed and on either the concentra-
tion of residual defects or on the degree of relaxation of the
system. To be on a safe side, we would recommend the fol-
lowing values for silicon: �1� for amorphization of the liquid

and the glass transition—� /2=0.06Req and T about 2000 K
and 2100 K, respectively; �2� for melting of the crystal, with
nucleation centers—� /2�0.14Req and T about 2950 K, the
MD melting temperature; �3� for crystallization of the
liquid—� /2=0.11Req and T�2000 K; �4� for crystalliza-
tion of a homogeneous amorphous phase—� /2=0.11Req
and T�300 K; and �5� for crystallization of an amorphous
phase with nucleation point—either � /2=0.06Req and
T�2024 K or � /2=0.11Req and any T.

The crystallized liquid and homogeneous amorphous
phase are polycrystals. At higher annealing temperatures, the
size of the grains is bigger and their number is smaller. The
crystallized heterogeneous amorphous phase is a single crys-
tal with concentration of residual defects depending on T. At
higher T, this concentration is smaller and the computational
speed is higher. Structural properties of the amorphous phase
and liquid are similar to ones in MD simulation. Therefore,
UFMC and MD methods can be effectively applied in turns,
if needed. All that is needed is just a few extra program lines
in an MD code. As an example of the attainable acceleration,
the number of iteration steps needed to get the same relaxed
amorphous phase during cooling the liquid is at least two
orders of magnitude smaller in UFMC than in MD.

In all the simulations, the UFMC parameter T should have
a physically meaningful value. With small � /2 �0.06Req�,
results are very similar to ones in MD, and therefore it can be
considered as a real temperature. However, for higher � /2, it
is a parameter rather than a real temperature and should be
treated carefully.

The main microscopic factor that allows crystallization of
the amorphous phase at low T and even crystallization of the
liquid is the large displacements of atoms compared to MD.
Because of these large displacements of all the atoms, inter-
atomic spaces �quasivacancies� are continuously created and
annihilated and in some cases, atoms exchange their posi-
tions. The creation of interatomic spaces is accompanied by a
large increase in the average atomic potential energy. This
effect is opposite to MD and it causes the conditions for
crystallization to be more favorable than in MD.

Finally, the present work almost exclusively applies to
Si. For other materials, the safety limits of the UFMC pa-
rameters may be somewhat different. Therefore, to prevent
artifacts, new calibrations should be performed for new ma-
terials. This work may be used as a guideline for how to do
this.
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